Les fondements de l'architecture : Le croquis de conception

Diviser en dessins à plat

TESTEZ LINKEDIN LEARNING GRATUITEMENT ET SANS ENGAGEMENT

Tester maintenant Afficher tous les abonnements
Apprenez à réaliser des opérations de division dans vos croquis. Ces opérations seront transposées en perspective.
07:19

Transcription

Parmi les petits savoir-faire qu'il faut développer, il y en a un qui est important, qui va revenir souvent, c'est de savoir diviser et, entre autres, de n'avoir pas peur de faire des petits calculs de tête pour diviser dans des longueurs. Alors, on peut commencer à voir ça à plat. On verra le problème, c'est surtout en perspective. Donc, à plat, vous pouvez vous exercer à faire cette figure que je vais faire. Vous voyez, vous prenez une ligne comme ça et vous vous posez la question d'abord de la diviser en deux. Donc, c'est vraiment à l'œil. Alors, après vous contrôlez. C'est pas très bon, là. Avec quelques tâtonnements et quelques entraînements, vous allez assez facilement diviser en deux. Ça n'a pas besoin d'être parfait. Alors, une fois que vous l'avez fait en deux, vous recommencez à l'échelle... à l'étage en dessous. Et maintenant, vous divisez en trois. Donc, c'est encore une fois à l'oeil. Voyez, vous posez des points sans trop insister. Quand vous sentez que c'est à peu près juste, Vous faîtes une petite vérification, comme ça. Voilà, là, ça suffit. Donc, c'est en trois. Donc, vous voyez, à chaque fois, il faut compter un peu. En quatre, c'est également facile : on prend les milieux et les milieux. En cinq, là, il y a une petite astuce qu'il faut connaître, c'est que la division en cinq n'est pas immédiate, donc, moi, ce que je pratique c'est de repérer une longueur au milieu, en vous disant mentalement que cette longueur, il va falloir la mettre deux fois à gauche et deux fois à droite. Vous voyez, là, c'est un peu grand. Donc, quand on a ça, on déplace comme ça les points. Et finalement, on arrive à un résultat. Vous pouvez faire ça sur une longueur précise de... Moi, je fais parfois 18 centimètres et 18 centimètres, c'est facile après de contrôler les différentes divisions. Et vous voyez là que c'est assez correct. C'est un petit peu grand. Alors, on arrive à un résultat qui est un peu plus fiable à l'échelle d'un croquis bien sûr. Si on voudrait faire des divisions précises, on prendrait une règle, mais, là, c'est dans le cadre de croquis. C'est encore à plat, vous verrez qu'on a d'autres techniques quand on veut faire en perspective. Donc, voilà, on était en cinq, donc si on veut faire six, pratiquement, après, on revient toujours sur les même systèmes. Voilà le six, le sept. Vous faîtes une petite longueur au milieu qui va tenir trois fois de chaque côté. Vous voyez,toujours, pour les nombres impairs, procédez comme ça : vous partez par le milieu, vous faîtes la longueur et vous faîtes la division. Alors, on va aller jusqu'à dix. Donc, on était à sept, donc maintenant huit. Évidemment huit, ça fait partie des faciles. Vous voyez, on divise à chaque fois en deux, puis encore en deux. Neuf : quand on sait diviser par trois, on sait diviser par neuf. Vous voyez, c'est un calcul mental qui est assez simple. Et encore faut-il y penser et le faire. Souvent je constate que les gens n'ont pas idée de simplement faire ça. On est en neuf et si je veux aller à dix, Alors, là, je coupe au milieu. Et je fais division en cinq de chaque côté. Vous voyez la division en cinq : un petit espace au milieu, deux coups à droite, deux coups à gauche. Voilà. Alors, vous voyez, là, on voit que le tracé a été bien fait parce que la ligne est régulière. Vous pouvez joindre toutes ces lignes comme ça, même traverser comme ça. Plus vos divisions seront correctes, plus le dessin sera régulier. Alors, ça c'est une première série de petites techniques que vous pouvez exploiter. Vous pouvez le faire dans l'autre sens, vous voyez. Vous voyez, là, il y a un petit écart. Donc, ça vous permet de voir quand il y a des erreurs. Alors, ensuite, dans l'ordre des divisions, on est généralement à diviser, non pas des longueurs, mais des choses qui sont déjà des surfaces. Donc, je vais vous montrer encore, un petit truc qu'on emploie : c'est quand on veut diviser un rectangle. On va toujours faire le jeu des diagonales parce que les diagonales nous permettent de diviser en deux dans ce sens là, de diviser en deux aussi dans ce sens-là. Et quand vous pouvez diviser en deux avec les diagonales, vous pouvez appliquer cette deuxième recette qui consiste, vous voyez, à partir comme ça et partir comme ça, ou simplement faire le symétrique. À l'endroit où vous recoupez avec la nouvelle section, la première diagonale que vous aviez tracée, vous allez avoir une division en fait en trois, c'est-à-dire que le... Vous voyez, c'est ici. La longueur et le rectangle sont maintenant divisés en trois. Et du reste, vous pourriez continuer. Vous voyez, si on fait comme ça, on recoupe ici. On a une division en quatre. Et si on refait cette petite opération, en visant comme ça, on a une division en cinq et ainsi de suite, jusqu'à l'infini, comme ça. Donc, c'est utile ce système jusqu'à trois. Si vous voulez faire... Après, c'est un peu compliqué, on a d'autres manières de faire. Donc, vous voyez pour diviser en deux, on fait ça et pour faire le trois, on fait ça. Ça, ça marche très bien Et vous verrez que ça marche aussi dans la perspective. Alors, il y a encore une méthode de division qui est aussi fonctionnel en perspective. On verra tout ça en perspective, un peu plus tard. C'est celle-ci : supposez que vous ayez une longueur quelconque, horizontale ou pas et que vous voulez la diviser, mettons en cinq, alors, c'est le vieux principe du théorème de Thalès. Vous partez d'une des extrémités, tracez un trait quelconque et vous mesurez sur ce trait une longueur que vous choisissez à votre guise, que vous allez simplement reproduire cinq fois si vous voulez diviser en cinq, quatre fois si vous voulez diviser en quatre, etc. La seule chose, c'est de le faire juste mais ça, c'est facile. Si on voulait le faire très précis, on prendrait une règle, vous voyez. Ça ne pose aucune difficulté. Un, deux, trois, quatre et cinq. Donc, on a fait la cinquième, on joint l'extrémité du segment qu'on veut diviser. On obtient ça. Et à ce moment-là, quand on trace des lignes parallèles à cette ligne qu'on a obtenu en faisant ça. On transporte, en quelque sorte, la division en cinq qu'on avait faite ici, on la transporte là. Ce sont les principes à retenir très simple pour diviser. et on verra plus tard qu'on peut appliquer ça dans la perspective.

Les fondements de l'architecture : Le croquis de conception

Maîtrisez le dessin de croquis en architecture. Assimilez et mettez en œuvre des techniques efficaces de construction de perspectives diverses et d'expression graphique.

4h48 (46 vidéos)
Aucun commentaire n´est disponible actuellement

Votre formation est disponible en ligne avec option de téléchargement. Bonne nouvelle : vous ne devez pas choisir entre les deux. Dès que vous achetez une formation, vous disposez des deux options de consultation !

Le téléchargement vous permet de consulter la formation hors ligne et offre une interface plus conviviale. Si vous travaillez sur différents ordinateurs ou que vous ne voulez pas regarder la formation en une seule fois, connectez-vous sur cette page pour consulter en ligne les vidéos de la formation. Nous vous souhaitons un excellent apprentissage avec cette formation vidéo.

N'hésitez pas à nous contacter si vous avez des questions !